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Collective Modes in Ising Lattices 
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The effect of collective modes on the otherwise local structure of Ising lattices 
is investigated by studying a number of exactly solvable models. First, the open 
one-dimensional Ising model serves to define sharp locality. This feature then 
remains upon extension to a Bethe lattice, despite the existence of a phase 
transition. But insertion of periodic boundary conditions creates a collective 
mode which breaks locality in a very specific fashion. A model interface is 
analyzed to show that even when locality is not broken, local uniformity can 
become untenable. 

KEY WORDS:  Ising lattice; Bethe lattice; density functional; collective 
mode; density profile: local correlations. 

1. I N T R O D U C T I O N  

There are two ancient diametrically opposed descriptions of the dynamics 
of a crystal lattice. In the Einstein model, the a t o m s - - o r  molecules- -a t  the 
various sites oscillate independently,  a highly localized dynamical  descrip- 
tion. In the Debye model, each site is harmonical ly bound  to its neighbors,  
the independent excitations now consisting of system-wide waves, collective 
oscillations of  the whole system. Nonidealized systems will of course have 
both behavioral  aspects. Since the local picture gives rise to simple and 
widely used approximate  treatments of equilibrium properties, one would 
like to investigate under what  circumstances the explicit insertion of 
collective modes is manda to ry  for accurate thermodynamics ,  and, more  
importantly,  what  form this insertion must  take. 

One way of distinguishing the degree of nonlocali ty is by considering 
nonuni form versions of  the system being s tud ied- -nonun i fo rm density for 
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a particle system, or nonuniform magnetization for phenomena describable 
by spin. For simplicity, we will choose the latter, and so our domain is that 
of Ising models specified by the spins {ax} at the lattice sites {x}, and the 
associated magnetization profile rex= @x) .  The nonuniformity being 
studied can be externally incited or self-maintained as in a phase separa- 
tion, but in either case, an effective vehicle for the study is the Helmholtz 
free energy as a function of the magnetization profile. This implies that we 
are working with the inverse formulation (see, e.g., ref. 1) of the profile 
problem: for an external field hx, with intersite interaction energy 
~b(...a~.-.), the grand potential at reciprocal temperature /~ and chemical 
potential/~ is given by 

so that 

1 
Q :  - ~ l n  E exp[-/~q~(. �9 .ax - �9 .) +/~ ~ (/~- hx) ~r~} (1.1) 

x 

m x =  8f2/ahx (1.2) 

In the inverse formulation, the rn~ are chosen as the independent controlling 
variables, via the Legendre transform to the "internal" free energy 

F{ . . .m~ . . . } = O + ~ (# - hx) m~ 
x 

= F - -  ~ m~h.~ (1.3) 

and the profile equation takes the form 

# - hx = 8F/am~ (1.4) 

If our system behaved strictly locally, this would manifest itself as 

F =  ~ f ( m x )  (1.5) 
m 

where f ( a )  is the local free energy density, i.e., corresponding to the 
uniform bulk system, and consequently 

/~ - h x  - f ' (m~) (1.6) 

would be strictly local as well. More generally, one could have sharply local 
entities extending over a few sites, e.g., 

F=�89 Y~ f2(mx, m~.)+Efl(,nO ~1.7) 
<x v) x 



Collective Modes in Ising Lattices 1265 

where (x,  y )  denotes nearest neighbor relation of x and y, and then 

# - h . ~ =  ~ O~nxJ2 ,.,m~.)+ f'l(mx) (1.8) 
( y. x ) - 

is influenced only by nearby m;.. Alternatively, one can say that the 
generalized direct correlation function (for a survey see ref. 2) 

C2(x, y) = eft(# - h~)/Sm,, 

= fi c32f2(mx, m.~.)/dm,~ Ore;. 6<,..~> 

+f l  If 'l '(m,~)+ L c32J2(m,~, m;)/Om2) Oy.x (1.9) 
(z.x) 

has finite range. Finally, one may have mere locality, in which contribu- 
tions to # - h ~  decrease sufficiently rapidly as one moves away from x, 
mirrored in obvious fashion by F and C 2. 

In the presence of collective modes, e.g., ones originating dynamically 
as system-wide waves, vortices, surface waves on an interface,..., a local 
description may not make sense. One might imagine fixing the collective 
amplitudes, with the constrained ensemble being a superposition of locally 
uniform regions, but relaxation of the constraints would then introduce a 
superensemble of structures, killing locality, uniformity, or both, in each 
region. My intention in this paper is to use a sequence of solvable models 
to probe, in a preliminary fashion, when such nonlocal or global modes are 
to be anticipated, and the modifications in such as the free energy that they 
entail. This is of course all in the context of thermal equilibrium, but the 
dynamical consequences hovering in the background will be evident. 

2. M E A N  F IELD F O R M A T  

One approach to seeing why a sharply local free energy is a good first 
guess, and how to correct it, is by a neat reformulation due to Kac and 
Siegert,(3~ among others. Consider the basic ferromagnetic nearest-neighbor 
coupling Ising model in an external field 

~ - M # = ~ ( h . ~ - p ) a ~ -  Z ax%,+J'Za~ (2.1) 
~: (x v> x 

2 = NJ' for N sites is an irrelevant but very useful constant, The term J '  Z ax 
being chosen so that the matrix 

Jx/= Ja <x,/> + J'6x.~ (2.2) 
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is positive definite. The Kac-Siegert trick is then to observe that the energy 
exponent of the partition function 

expE  ,  { 
{~} x,v 

can be made fully linear in the {a~} via the identity 

= (Det 2~zJ/fl) -1/2 

Then the o~ summations can be done explicitly, 

exp[[3(v~+#-h~)o~]=2cosh[ l (v~+#-hJ  (2.5) 
C~x= +_1 

resulting in the "continuous spin" form 

Z=(Det2~J/fl) 1/z f . . . f  exp(--fl/2 ~ J~.lv.~Vy) 

x FI 2 cosh fl(vx + u - hx) l~ dv~ (2.6) 
x 

What is so special and convenient about (2.6)? If J ~ is "large" (e.g., 
J long-range and weak), a standard steepest descent expansion should 
work, with the integral being dominated by the vicinity of one point in 
v space; let us take this as an approximation. At the point in question, g, 
the gradient of the integrand of (2.6) vanishes: 

J~-~.l ~Sy = tanh/~(~5 x +/~ - hx) (2.7) 
Y 

[the maximizing point 0 being chosen when (2.7) has more than. one solu- 
tion]. But also, if W denotes the integrand--the unnormalized probability 
in v space--then if 0 is dominant, 

1 ~Z/~hx ~Wtanh f ( vx+p-h~) l - Idvx  
m x -  fl Z ~ W ~I dv x 

= tanh fl(gx + U - hx) (2.8) 
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From (2.7) and (2.8), we have 

vx = ~ J.~vm~ (2.9) 
Y 

so that Ox is recognized as the "mean field" due to internal forces (see, e.g., 
ref. 4). 

The thermodynamic analysis of (2.1) is now immediate. We have from 
(2.7) and (2.8) p - h,  = (1/fi)(tanh -~ Y', J .~)gy-  zS~), and hence from (2.9) 

1 
/~ - h x = ~ tanh -1 mx_  ~ J~ym~, (2,10) 

which is indeed a sharply local relationship. Furthermore, we can integrate 
back, via (1.4), to obtain the corresponding local free energy 

F= ~ f(m~) - �89 ~ J vvmxm, (2.11) 
x 

where 

1 ( .  

f ( z ) =  -g [ tanh ' z dz 
P J 

The locality of (2.10) and (2.11) does not preclude the expected phase 
transition at some tic, signalled by the appearance of two solutions bifur- 
cating from the uniform kt - hx = 0, m., = 0 solution at low fl, and occurring 
at the tic at which 

c?# - hx  1 1 
(?my. - f ic  1 - m ~  6~.,.-Jx.v (2.12) 

first becomes singular for m~ = 0. At fl~., there is also a nonuniform two- 
phase solution to (2.10) wi th / . t -h~  = 0 and long-range correlations along 
the two-phase interface. But F of (2.11 ) is a strange free energy--it does not 
arise exactly from any interaction energy, and despite the long-range 
correlations in (2.10) under interface conditions, there is no softening of the 
profile with increasing volume of the lattice. 

There is little difficulty in carrying out corrections to steepest descent, 
picking up the approximate interfacial surface modes, and correcting the 
evaluation of (2.6) (see, e.g., ref. 5). But (2.6) is not strictly or even sharply 
local at zeroth order; extending the corrections to F, in which nonlocality 
would be meaningful, is a difficult job. We must deal with something 
simpler than the general expression (2.1). 
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3. O N E - D I M E N S I O N A L  LATTICE GAS 

To get some feeling as to when and how collective modes play a 
role, it would be nice to start with a system in which they are 
explicitly -manifestly--absent,  a rigorously local nontrivial model. Indeed, 
such a model exists, the one-dimensional nearest neighbor Ising model, (6) 
whose extensions, trivial and nontrivial, will serve as our major tools. 
Technically, it will be a bit more convenient to regard this as a lattice gas, 
and with no increase of difficulty to imagine the occupation number v~ to 
take the values 0, 1 ..... D at each site. The site, and adjacent site, Boltzmann 
factors will now be denoted by 

w~(v)=e ~'-u~ e(v, v ' )=e -~ol~'v'~ (3.1) 

where u~ is the external potential and the site-site potential ~b(v, v') need 
not be specified yet [nor is the specific form of wx(v) in (3.1) required]. 
The profile equation we seek is the relation between p - u ~  and the 
"density" 

ny(v) = (6v~..v) =- Prob(vy = v) (3.2) 

Now, on the infinite line, we have 

Z= Z I~ w~(vx) I-I e(vx, vx+l) (3.3) 
{vx} .~ x 

Furthermore, ny(V), obtained by fixing Vy, decomposes (3.3) into three 
contributions, namely 

ny(V) = w.v(v) Z.v(v) Zp(v)/Z (3,4) 

in terms of the truncated partition functions 

Zy(v)=~-~ ( ) ~ _  ~ wx(Vx)[~e(Vx, Vx-1)]e(V, Vy 1)) (3.5) 

] 2 y ( V ) = ~  w~(v~) v~ 1) e(v ,+t ,v)  (3.6) 
{vx} x-= y+ 1 

summation being only over the arguments present. Equations (3.5) and 
(3.6) will be replaced by the simple recursion relations 

Zy(V) = ~, e(v, v') wy_ ,(v') Zy ,(v') (3.7) 
v' 

Zy(v) = ~ Zy+ l(v') W.v + l(v') e(v', v) (3.8) 
v 
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results, we readily arrive at the pair 
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(3.4) and combining the 

r ! t t t  e l ( v , v ' ) e (v , v" )ny (~  )Zy(v ) /Z) . (~  ) = n y _ l ( v  ) (3.9) 
v ' ,  v "  

" ~ ') /Zy(v )=nv+ l (v  ) (3.10) e- l (v ,  v') e(v, v")ny(V ) Zy(v * " _ 
v ' ,  v "  

both of which take the form 

e - l ( v , v ' ) e ( v , v " ) n ( W ) R ( v ' , v " , n , n ' ) = n ' ( v )  (3.11) 

where 

2 
v . v  

R(v', v", n, n') = G(v', n, n')/G(v", n, n') 

subsequent to which the profile equation is given by (3.4) as 

Wy(V")=R(v' ,v",ny ,  n y _ l ) R ( v , ~ ' , n ~ , , n y + l )  n'~'(v') (3.12) 
wy(v') " n.v(v' ) 

Specializing now to the ferromagnetic Ising case, in which v = 0, 1, the 
density is nx=nx(1),  while n x ( 0 ) = l - n x ;  have wx(0)= l ,  

we conclude that the profile equation is indeed sharply local, as is the free 
energy F, although this is a somewhat more complicated object. 

Since (3.12) now reads 

/~(#-  ux) =In  nx + l n R ( n x ,  nx t ) + l n R ( n x ,  nx+l)  (3.15) 1 -- nx 

gas we 
wx(1)=e  ~tu ..... I, q i (v ,v ' )= - Jvv ' .  Then Eq.(3.11) reduces to a single 
equation for R(0, 1, n, n') - R(n, n') (by choosing v = 0) 

1 
en(1 ) R - n(O ) -R + en(O ) - n(1 ) + n'(O) f = 0 (3.13) 

where e = e Jr f = e - 1, so that 

2 R ( n ' n ' ) =  - -[  l + f'nen ( 1 + ! ) ]  

+ 1 1 + + 4  1 - - n  '/2 
en e n ) (3.14) 
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4. THE BETHE LATTICE 

Now that we have a model with a bona fide local structure, we can try 
to bring in collective modes. Enforcing a phase separation, a weakly main- 
tained spatial boundary, is an obvious possibility, most easily invoked by 
locating a bifurcation of the uniform density. This suggests working on a 
Bethe lattice of coordination number c (equivalent to c rooted ( c - 1 ) -  
branch Cayley trees from a common origin), the context in which--subject 
to a number of caveats (7) relating to the domination of such a lattice by its 
surface--the Bethe Peierls phase transition ~81 becomes exact. We can 
proceed very much as in the one-dimensional, or c = 2 ,  case (see also 
ref. 9). Here, (3.3) must be replaced by 

Z =  ~ ~ w.r(vx) VI e(l"x, 1,),) (4.1) 

where the product is over unordered nearest neighbor pairs (x ,  y ) ,  while 
(3.4) decomposes instead into 

ny(V)= Wy(V) ( ]  Z(y"(v)/Z (4.2) 
t = l  

(0 Z.v (v) is the contribution of the direct ion-/Cayley tree rooted at y, given 
in detail as 

Z(yi}(v) = ~, e(v, v v+~)I~Wx(Vx}] I~ e(vx, Vy) (4.3' 
{~'xl )' + fe [ v x] } . (x, y) 

where i" signifies a vectorial bond in direction i. 
Again, we need the recursion relation satisfied by ZC~)(v). Assuming for 

convenience that c is even, this is readily verified to be 

Z(j)(v)= e(v, v') Zy+i ( ) %.+;(v ) (4.4) 
/ j l 

where - i  is the direction opposite i. Equation (4.4) leads via (4.2) to 

nv+f(v) 
ZJl(v) = Z etv, v') Z) ')(v'----------~ Z (4.5) 

v' y + f \ -  J 

and hence to 

ny(v)/Z(yi)(Y) = ~ e I(V, ~t) Z(y~i~(vt)/Z (4.6) 

v 
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Combining (4.5) and (4.6), we find the desired 

e-l(v, v') e(v, v") Z})(v', ) ,)~----7- n,.(v") = n,.+e(v) (4.7) 
,,.v' Zy (v ) 

Since (4.7) is again of the form (3.11), the computation, e.g., (3.13) of the 
one-dimensional lattice can be taken over intact. The only difference is that 
(4.2), in the form 

~),(v' ) n~(r z~z'l(v ') 
wy(v') n,,(v') ~ Z!~!)(v ") (4.8) 

now determines the resulting profile. In particular, in the Ising case, 

n x  c 

f l ( /~ -Ux)=ln  1 - - ~ x +  ~ in R(O, 1, nx, nx+~) 
- i = 1  

(4.9) 

Equation (4.9) of course is sharply local But the uniform m = 0 or 
n =  1/2 case does bifurcate at the Bethe-Peierls transition temperature: 
Setting ux = 0, nx=  n, (4.9) becomes 

tip = In - -  - 
1- -n  

c l n 2 n e + c l n { 2 n - l + [ ( 2 n - 1 ) 2 + 4 e n ( 1 - n ) ]  1/2} (4.10) 

so that 

Off# = 4 - 2 c + 2 c e  1/2 (4.11) 
On n = 1 / 2  

which vanishes at the classical Bethe Peierls 

c 
J f i c = 2 1 n - -  (4.12) 

2 - - c  

Clearly the phase transition and implied phase separation do not produce 
the global modes needed to destroy locality. 

5. GLOBAL M O D E S  

In retrospect, the failure of the Bethe lattice to invoke global nonlocal 
behavior, even in the presence of some sort of phase transition, is not 
surprising. One is seeking cooperative effects, in which a site x which 
influences y is in turn influenced by y through another path. In other words, 
simple connectivity will not do. If this is really the case, we must allow for 
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large-scale interaction circuits, and this can be done even in the one- 
dimensional Ising model by imposing periodic boundary conditions3 m> Let 
us do so, returning now to the spin representation {ax}, x = 1 ..... N, with 
oN+~ identified with o~. We thus have 

N 

Z =  ~ I~ Wx(~176176 (5.1) 
, .!~ x = 1 

where 

W x ( ~ r ) = e ~ < U - h , ) ~  e ( v ,  v ' ) = e  ~J~'~' ' O ' N +  1 = 0"1 

or in obvious matrix notation 

Z =  Tr(w lew2e- . .wNe ) (5.2) 

Instead of two truncated partition functions, unavailable because 
of the closure of the ring, we introduce first a normalized bond-excised 
partition function, the matrix 

~x,x + 1 = e W x  + 2 e W x  + 3 " "  W x -  2 e w x - l e / Z  (5.3) 

and then the corresponding site-excised 

(~x = e W x  + 1 e W x  + 2 " �9 �9 Wx - 2 e W x  - 1 e / Z  (5.4) 

Clearly 

n.~ = Tr offxwx, 1 = T r  ~xWx (5.5) 

where a is the diagonal matrix a6~,o,. Since ~x=eWx+l~x,x+l, while 
ffx+~ = ~ x , ~ + ~ w x e ,  we have the basic recursive relation 

e W x +  l ~ x + ,  = ( , x W x  e (5.6) 

An immediate consequence (note that Det wx = 1) is that 

Det ~'.~ + 1 = Det ~x = K (5.7) 

where K is a site-independent function of the a~. 
We now want to eliminate the ~x from (5.5) and (5.6). To start with, 

Eqs. (5.5) imply that 

(x(-1, -1)  Wx(- 1)= �89 

(x(1, 1) wx(1) = �89 +m~)  
(5.8) 
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In order to find the ( - l ,  1) and (1, - 1 )  matrix elements, we use (5.6) to 
write 

o-14'.,~ + l~x + 1 = o-e l~xW~e (5.9) 

and take the trace to obtain 

- f ~ ( - 1 , 1 ) w ~ ( 1 ) + f x ( 1 , - 1 ) w x ( - 1 ) = C m x - s m x +  1 - a x  (5.10) 

where c = cosh 2flJ, s = sinh 2flJ. Similarly, writing (5.6) as 

a ~ x - -  1 Wx-- I = aew xJ~e-  1 (5.11) 

and taking the trace, one gets 

f x ( -  1, 1) w x ( -  1 ) -  fx(1, - l ) w ~ ( 1 ) = c m ~ - s m ~ _ l - b x  (5.12) 

Solving (5.11) and (5.12), and setting Wx(1 ) =-14'x, Wx(--1)= 1/Wx, one has 

~.~(- 1, 1) = (b.~/14'x + axw~)/(w 2 -  w~ -2) 
~5.13) 

fx(1, - 1 )=  (bxwx + ax/w;)/(w~ - w2 2) 

Hence, condition (5.7)becomes 

"~ 2 14,2 2 � 8 8  )]/( . x - w ,  ) = K  (5.14) 

which we solve as 

1 l n [ _ b ~ +  (b2 - 2 /~(~ - h x )  = ~ . . rex+ 1 -4K)~ '2] /[a~+ ( a Z - m ~  + 1 - 4 K )  ~/2] 

(5.15) 

The reduction of our system to (5.6) has made the functional form of 
K unavailable. Before showing how to find it, the full set of consequences 
of its existence can be ascertained. The important observation is that, by 
direct computation, 

c~ - h x )  3 K Om~m (# x = ~ m x  ( # - h y )  (5.16) 

It follows that there is a free energy on the expanded space of m = {rex} 
and K such that 

# - h~ = OFK(m , K)/Om x [K (5.17) 
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But we also know that there is an F(m) for which 

# - hx = ~?F(m)/~mx 

Hence 

or if 

then 

&V(m)/c~mx = 3FK(m,  K ( m  ) )/Omx - OK/c3mx r K) /OKI ~ = KII, I 

A(m) =F(m)--FK(m, K(m)) 

C~FK/3K c~K/Omx = - 3 A / t ? m x  

Percus 

(5.18) 

(5.19) 

(5.20) implies that 

(5.20) 

F(m, K) = F{m) 

I~ - hx = 0F{m, K ) /  3m x (5.25) 

0 = QF(m, K ) / a K  

That is, the expanded space free energy F(m, K )  reduces to F(m), and 
# - -  hx is conjugate to rn x, 0 to K on the expanded space, where K is given 
its explicit form K(m). 

To actually find K(m), we need W(K), and for this it is sufficient to 
use (5.24) at uniformity, r e x = m ,  an easy computation. Interestingly, as 
well, K is related to the grand partition function 

K =  2NsN/z 2 (5.26) 

showing both its global character and the fact that K-+ 0 as N-+ oo. 

that at K =  K(m), 

for some function W, and that 

F(m) = FK(m, K(m)) + W(K(m)) (5.22) 

From (5.20) and (5.21), we see that 

~3FK(m, K)/~?KI K = K~,,, ~ = --r W(  K) /OKI  K = K~m ~ (5.23) 

We conclude therefore, on defining 

F(m, K) = FK(m, K )  + W ( K )  (5.24) 

A(m)=  W(K(m)) (5.21) 
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6. BREAKING OF LOCAL UNIFORMITY 

One aspect of global modes is clear. The system can remain formally 
local, but parametrized by global amplitudes. This, for example, can also 
be the case when a locally describable system is augmented by an interac- 
tion potential of low rank as a matrix. However, the idealization of strict 
locality implies that of local uniformity, which may make no sense if each 
site requires an ensemble of locally uniform states. Another extension of 
our basic one-dimensional Ising model Im illustrates this point. It is that of 
a square lattice of integer coordinates (x, t), with a nominally vertical inter- 
face--between "vacuum" on the left and "liquid" of density 1 on the 
right---composed of upwardly directed bonds at +_45 ~ from the vertical. A 
configuration can be described either by spins {a, = _+1 } for a +45 ~ direc- 
tion leaving a site of altitude t, or by {xt}, the horizontal locations of the 
ends of the bonds, or for that matter by the pairs (xt, at). In any event, this 
is effectively a one-dimensional lattice, with a "spin" degree of freedom at 
each site. The "interfacial" energy can be taken as 

~b,= J ~  (1 + a , a ,+ l )  (6.1) 

while the external field energy is 

q),= ~ u(x', t) (6.2) 
x '  = x t 

of course with 
f - - 1  

a , = x t + l - x  ,, x~= ~ a,, (6.3) 
0 

This model has indeed been solved, 111J using the (xt, at) represen- 
tation. However, the phenomena occurring are seen most easily in the 
continuous "drum-head" model f12~ obtained by appropriate scaling. Here, 
if ~(t) denotes the horizontal excursion of the interface at height t, then the 
microscopic fluid density at the point (x, t) is given by 

If we define 

nr t) = ~ ( x -  ~(t)) 

then for unit surface tension, the energy 
[~ = dr U'(x, t) = ~U(x, t)/ax] 

(6.4) 

U'(x, t ) = # - u ( x ,  t) (6.5) 

of configuration {~(t)} is 

EE~] = f [�89 2 + U(~(t), t)] dt (6.6) 
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assuming small interface slope with respect to the vertical to justify the 
quadratic surface energy. Choosing kT= 1, we see that the grand partition 
function is now the path integral 

S= f e-L'EeJD#(t) (6.7) 

If we introduce the truncated partition functions 

((x"l e ~E~D~(t ) 3(x, t) = ~10,o~ 
(6.8) 

-~(x, t) = C I~ e EEr 
~(x,t) 

where the interface is regarded as pinned at the indicated points, we then 
have 

n'(x, t) = Z(x, t) .~(x, t)/Z (6.9) 

path integrals (6.8) are recognized as satisfying the Bloch The 
equations 

~ , _ _  1 ~ , , , _ _  - -  U~ (6.10) 2~ U~, _ ~ =  1 ~,, 

and it is routine to eliminate Z and 2 from (6.9) and (6.10). There results 
the profile equation 

17+ n")2_(0 ' 1 
U - u = ~ \ ~ /  ~ 28x2}\ n' J (6.11) 

which integrates without difficulty to create the internal free energy (13) 

F =  1 ( h~- 1 "'____~z~ 
2 ff  -~+ 4 n' ] dxdt (6.12) 

The point is now clear: F is indeed a local free energy, with a free energy 
density containing only finite derviatives of n, but n' occurs in the 
denominator, so that there is no way of expanding about a locally uniform 
reference. 

7. C O N C L U D I N G  R E M A R K S  

We have investigated the question of localized inverse response on 
Ising lattices by means of a number of exactly solvable model systems. This 
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allowed us to show that sharp locality need not be broken by the existence 
of the fluctuations inherent in two-phase systems, but that the presence of 
an interaction circuit certainly suffices. An examination of the cooperativity 
of multiple interaction circuits is work for the future. We have also seen via 
an interface model that sharp locality does not imply the meaningfulness of 
local uniformity, but the validity--or modifications--of this statement in 
higher dimensionality is likewise an open question. It seems that such 
models are valuable tools for understanding the interaction between local 
and global behavior, and several more examples are in the process of 
evaluation. 
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